信息前沿
信息前沿
独特的微观世界窗口技术
当前位置:首页 > 信息前沿 > 学术中心

Pore Space Partition Synthetic Strategy in Imine-linked Multivariate Covalent Organic Frameworks

发布时间:2023-12-04

Abstract:

Partitioning the pores of covalent organic frameworks (COFs) is an attractive strategy for introducing microporosity and achieving new functionality, but it is technically challenging to achieve. Herein, we report a simple strategy for partitioning the micropores/mesopores of multivariate COFs. Our approach relies on the predesign and synthesis of multicomponent COFs through imine condensation reactions with aldehyde groups anchored in the COF pores, followed by inserting additional symmetric building blocks (with C2 or C3 symmetries) as pore partition agents. This approach allowed tetragonal or hexagonal pores to be partitioned into two or three smaller micropores, respectively. The synthesized library of pore-partitioned COFs was then applied for the capture of iodine pollutants (i.e., I2 and CH3I). This rich inventory allowed deep exploration of the relationships between the COF adsorbent composition, pore architecture, and adsorption capacity for I2 and CH3I capture under wide-ranging conditions. Notably, one of our developed pore-partitioned COFs (COF 3-2P) exhibited greatly enhanced dynamic I2 and CH3I adsorption performances compared to its parent COF (COF 3) in breakthrough tests, setting a new benchmark for COF-based adsorbents. Results present an effective design strategy toward functional COFs with tunable pore environments, functions, and properties


Copyright © 2021 北京青檬艾柯科技有限公司 版权所有 京ICP备2021013551号

技术支持:云栈互联